On freely decomposable maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The discrete dynamics of monotonically decomposable maps.

We extend results of Gouzé and Hadeler (in Nonlinear World 1:23-34, 1994) concerning the dynamics generated by a map on an ordered metric space that can be decomposed into increasing and decreasing parts. Our main results provide sufficient conditions for the existence of a globally asymptotically stable fixed point for the map. Applications to discrete-time, stage-structured population models ...

متن کامل

2 Decomposable maps and their relation to PPT states

We present two different descriptions of positive partially transposed (PPT) states. One is based on the theory of positive maps while the second description provides a characterization of PPT states in terms of Hilbert space vectors. Our note is based on our previous results presented in [22], [18], and [20]. 1 Definitions and notations In Quantum Computing a characterization of states with po...

متن کامل

On the decomposable numerical range of operators

 ‎Let $V$ be an $n$-dimensional complex inner product space‎. ‎Suppose‎ ‎$H$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎Hrightarrow mathbb{C} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎Denote by $V_{chi}(H)$ the symmetry class‎ ‎of tensors associated with $H$ and $chi$‎. ‎Let $K(T)in‎ (V_{chi}(H))$ be the operator induced by $Tin‎ ‎text{End}(V)$‎. ‎Th...

متن کامل

An application of decomposable maps in proving multiplicativity of low dimensional maps

In this paper we present a class of maps for which the multiplicativity of the maximal output p-norm holds for p = 2 and p ≥ 4. This result is a slight generalization of the corresponding result in [9]. The class includes all positive trace-preserving maps from B(C3) to B(C2). Interestingly, by contrast, the multiplicativity of p-norm was investigated in the context of quantum information theor...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2012

ISSN: 0166-8641

DOI: 10.1016/j.topol.2011.12.006